Structure-based engineering of streptavidin monomer with a reduced biotin dissociation rate.
نویسندگان
چکیده
We recently reported the engineering of monomeric streptavidin, mSA, corresponding to one subunit of wild type (wt) streptavidin tetramer. The monomer was designed by homology modeling, in which the streptavidin and rhizavidin sequences were combined to engineer a high affinity binding pocket containing residues from a single subunit only. Although mSA is stable and binds biotin with nanomolar affinity, its fast off rate (koff ) creates practical challenges during applications. We obtained a 1.9 Å crystal structure of mSA bound to biotin to understand their interaction in detail, and used the structure to introduce targeted mutations to improve its binding kinetics. To this end, we compared mSA to shwanavidin, which contains a hydrophobic lid containing F43 in the binding pocket and binds biotin tightly. However, the T48F mutation in mSA, which introduces a comparable hydrophobic lid, only resulted in a modest 20-40% improvement in the measured koff . On the other hand, introducing the S25H mutation near the bicyclic ring of bound biotin increased the dissociation half life (t½ ) from 11 to 83 min at 20°C. Molecular dynamics (MD) simulations suggest that H25 stabilizes the binding loop L3,4 by interacting with A47, and protects key intermolecular hydrogen bonds by limiting solvent entry into the binding pocket. Concurrent T48F or T48W mutation clashes with H25 and partially abrogates the beneficial effects of H25. Taken together, this study suggests that stabilization of the binding loop and solvation of the binding pocket are important determinants of the dissociation kinetics in mSA.
منابع مشابه
Biotin-assisted folding of streptavidin on the yeast surface.
Yeast surface display allows heterologously expressed proteins to be targeted to the exterior of the cell wall and thus has a potential as a biotechnology platform. In this study, we report the successful display of functional streptavidin on the yeast surface. Streptavidin binds the small molecule biotin with high affinity (K(d) ≈ 10(-14)M) and is used widely in applications that require stabl...
متن کاملEngineered streptavidin monomer and dimer with improved stability and function.
Although streptavidin's high affinity for biotin has made it a widely used and studied binding protein and labeling tool, its tetrameric structure may interfere with some assays. A streptavidin mutant with a simpler quaternary structure would demonstrate a molecular-level understanding of its structural organization and lead to the development of a novel molecular reagent. However, modulating t...
متن کاملMolecular engineering of streptavidin.
Streptavidin is a tetrameric protein produced by the bacterium Streptomyces avidinii; it has great similarity to the chicken protein avidin.14 These proteins bind the vitamin biotin with an extremely high affinity. The dissociation constant of streptavidin-biotin and avidin-biotin complexes is estimated at around M;3.4 this is one of the tightest noncovalent interactions found in biological sys...
متن کاملHow the biotin–streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer
The interaction between SA (streptavidin) and biotin is one of the strongest non-covalent interactions in Nature. SA is a widely used tool and a paradigm for protein-ligand interactions. We previously developed a SA mutant, termed Tr (traptavidin), possessing a 10-fold lower off-rate for biotin, with increased mechanical and thermal stability. In the present study, we determined the crystal str...
متن کاملProduction of Recombinant Streptavidin and Optimization of Refolding Conditions for Recovery of Biological Activity
Background: Streptavidin is a protein produced by Streptomyces avidinii with strong biotin-binding ability. The non-covalent, yet strong bond between these two molecules has made it a preferable option in biological detection systems. Due to its extensive use, considerable attention is focused on streptavidin production by recombinant methods. Methods: In this study, streptavidin was express...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره 81 9 شماره
صفحات -
تاریخ انتشار 2013